
Journal of Engineering Mathematics 50: 415–426, 2004.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

Nonlinear capillary free-surface flows
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Abstract. Capillary free-surface flows are considered. The fluid is taken to be inviscid and incompressible and the
flow to be irrotational. Particular attention is devoted to two-dimensional flows for which the free surfaces inter-
sect rigid walls. These include cavitating flows and local flows at the front of a small object (probe or insect)
moving at the surface of a fluid. A general study of the effect of surface tension on the possible singularities
which can occur at the separation points is presented. The results confirm and generalise previous findings on
the subject.
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1. Introduction

Free-surface flows can be classified into two main classes. The first is the class of free-surface
flows for which there are intersections between free surfaces and rigid surfaces. The prototype
of this class is the flow due to a ship moving at the surface of a fluid (see for example [1,
Section 3.10], [2,3]. The intersection is between the surface of the water and the hull of the
ship. Others are jets falling from a nozzle, cavitating flows past an obstacle and flows under a
sluice gate. The second class consists of free-surface flows with no interactions between rigid
walls and free surfaces. Examples are bubbles rising in a fluid and free-surface flows gener-
ated by an object moving below a free surface (e.g., a submarine). The prototype of this sec-
ond class is a train of periodic travelling waves at the surface of a fluid. Here the train of
waves extends periodically to infinity in the horizontal direction and the flow is studied inde-
pendently of the way in which the waves are generated.

In this paper we concentrate mainly on pure capillary free-surface flows, i.e., flows for
which surface tension is taken into account but gravity is neglected. We also assume that the
fluid is inviscid and incompressible and that the flow is irrotational. Crapper [4] found an
exact solution for the prototype of the free-surface flows of the second class. More precisely,
he obtained an analytic solution for nonlinear periodic waves travelling at a constant velocity
at the surface of a fluid. His work was extended to finite depth by Kinnersley [5]. Kinners-
ley found that his solutions also describe waves propagating on a sheet and calculated both
symmetric and antisymmetric solutions. Further branches of solutions were recently found by
Blyth and Vanden-Broeck [6]. Other exact solutions for pure capillary free-surface flows were
found by Crowdy [7]. In particular, waves in an annular geometry were calculated analytically.
This work was generalised numerically by Blyth and Vanden-Broeck [8].

Solutions for pure capillary free-surface flows of the first class are described in this paper.
We choose as our basic model the cavitating flow past a circular cylinder. We first describe
free-streamline solutions (i.e., solutions without surface tension) in Sections 2 and 3. Classical
results on open cavities are reviewed in Section 2 and a boundary-integral-equation method
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to compute cusped cavities is presented in Section 3. Cusped cavities were calculated analyti-
cally by Lighthill [9,10] for special geometries and numerically by Southwell and Vaisey [11].
We show that the cusped cavities form a continuation of the open cavities of Section 2. Our
boundary-integral-equation method generalises the work of Lighthill [9,10] in the sense that
it can be used for obstacles of arbitrary shapes.

The effect of surface tension T on the open cavities is considered in Section 4. In previous
work [12–16], it was shown that the limit T → 0 is singular in the sense that surface tension
introduces discontinuities in slope at the separation points (i.e., the points were rigid surfaces
intersect free surfaces). Here we concentrate on solutions for which a prescribed contact angle
is specified at the separation points. We show that the position of the separation points on the
circular cylinder is uniquely defined by specifying the values of T . Although the results are
presented for the specific problem of cavitating flows past a cylinder, similar results can be
expected to hold whenever a free surface intersects a rigid smooth surface. Finally solutions
in which waves appear in the far field are described in Section 5.

2. Free-streamline open cavities

In this section we review classical properties of free-streamline solutions, which will be useful
in the remaining part of the paper. We consider the cavitating flow past a circle sketched in
Figure 1. We denote by R the radius of the circle and by U the constant velocity of the flow
at infinity. We assume that the fluid is inviscid and incompressible and that the flow is irro-
tational. We introduce Cartesian coordinates x and y and assume that the flow is symmetric
with respect to the x-axis. The cavity is bounded by the streamlines BG and AD and by the
portion BA of the circle. The cavity is open in the sense that it is unbounded as x → ∞. We
denote by p∞ the constant pressure in the flow at infinity and by pc the constant pressure in
the cavity and we define the cavitation number Cc by the relation

Cc= p∞ −pc
1
2ρU

2
. (2.1)

Bernoulli’s equation implies that

1
2
q2 + p

ρ
= 1

2
U2 + p∞

ρ
(2.2)

everywhere in the fluid. Here q is the magnitude of the velocity and p is the pressure in the
fluid. In the absence of surface tension, p = pc on the surface of the cavity. It follows from
Equations (2.1) and (2.2) that

q2 =U2(1+Cc) (2.3)

on the surface of the cavity. Therefore the velocity q is constant on the free surfaces BC and
AD. Such free surfaces are referred to as free streamlines.

Since the value of q on the free surface approaches U as x → ∞, Equation (2.3) implies
Cc = 0 and

q=U on BG and AD. (2.4)

Solutions with Cc �= 0 will be discussed in the next section.
We define dimensionless variables by using the radius R of the circle as the reference

length and the velocity U as the reference velocity. We introduce the potential function bφ,
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Figure 1. Sketch of the flow configuration and of the
coordinates. When the surface tension T is zero, the
free surfaces leave the cylinder tangentially and β = 0.
When T �= 0, the angle β can be different from zero.

+1
A

B
C DE

Gφ

ψ

Figure 2. Sketch of the flow of Figure 1 in the com-
plex potential plane.

the stream function bψ and the complex potential f = φ+ iψ . Without loss of generality we
choose φ = 0 at the point C and ψ = 0 on the streamlines ECAD and ECBG. The constant
b is defined so that φ = 1 at the separation points A and B. The flow configuration in the
complex potential plane is illustrated in Figure 2.

We introduce the complex velocity u− iv and define the function τ − iθ by the relation

u− iv= eτ−iθ . (2.5)

Here u and v are the horizontal and vertical components of the velocity. The definition (2.5)
has been used by many previous investigators. One of its advantage is that the curvature K
of a streamline is given by the simple formula

K= eτ

b

∂θ

∂φ
(2.6)

We shall seek τ − iθ as an analytic function of φ+ iψ in the half plane ψ < 0. The solu-
tion in ψ > 0 can then be obtained by symmetry. The boundary conditions on ψ = 0 are then
given by

θ =0 on ψ=0 −∞<φ<0, (2.7)
eτ

b

∂θ

∂φ
=1 on ψ=0 0<φ<1, (2.8)

τ =0 on ψ=0 1<φ<∞. (2.9)

The condition (2.7) follows from symmetry. Equation (2.8) follows from Equation (2.6) and
the fact that the curvature of the rigid boundary ACB is one. Relation (2.9) is the dynamic
boundary condition (2.4) rewritten in terms of τ .

This completes the formulation of the problem. We seek τ − iθ as an analytic function of
φ+ iψ in ψ < 0 satisfying (2.7–2.9). We solve the problem by following the series-truncation
method introduced by Brodetsky [17]. First we map the flow domain into the unit circle in
the complex t-plane by the transformation

f 1/2 =
(
t− 1

t

)
1
2i
. (2.10)

The flow configuration in the t-plane in shown in Figure 3. The rigid surface ACB is mapped
on the circle |t | = 1 and the free surfaces AD and BG are mapped on the imaginary axis. The
conditions (2.7–2.9) become
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Figure 3. Sketch of the flow of Figure 1 in the complex t-plane.

θ =0 on 0<t <1, (2.11)
eτ

b

∂θ

∂φ
=1 on t= eiσ −π/2<σ <0, (2.12)

τ =0 − i<t <0. (2.13)

Here we have described the unit circle |t |=1 by t= eiσ .
Next we represent τ − iθ by the expansion

τ − iθ =− log
1+ t
1− t −

∞∑
n=0

Bnt
n. (2.14)

The idea behind Equation (2.14) is that a singularity in t occurs in the flow at the point
C where the flow is locally a flow inside a right angle corner (see Figure 1). Therefore

u− iv∼f 1/2 as f →0 (2.15)

Using Equations (2.5) and (2.10) yields τ − iθ ∼ log(1− t) as t→1. Therefore

τ − iθ + log
(

1+ t
1− t

)
(2.16)

is not singular and can be represented in the unit circle of the t-plane by a Taylor expansion.
This leads to Equation (2.14). One might argue that other singularities occur at the separation
points A and B. However, these singularities are automatically taken into account by Equa-
tion (2.10).

It can easily be checked that Equations (2.11) and (2.13) are satisfied by assuming that the
coefficient Bn and real and that Bn = 0 when n is even. Therefore we rewrite Equation (2.14)
as

τ − iθ =− log
(

1+ t
1− t

)
+

∞∑
n=1

Ant
2n−1. (2.17)

We determine the coefficients An so that Equation (2.12) is satisfied. This is done numerically
by series truncation and collocation. Thus we truncate the infinite series in Equation (2.17)
after N terms and we satisfy Equation (2.12) at the mesh points
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Figure 4. Computed free-surface profiles for γ = 25◦,
γ = γ ∗ ≈ 55◦ and γ = 150◦.
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Figure 5. The cavitating flow corresponding to γ =
γ ∗∗ ≈ 124◦.

φI =− π

2N
I I =1, . . .N. (2.18)

This is achieved by using Equation (2.17) to evaluate the values of τ , θ and ∂θ
∂φ

at the mesh
points Equation (2.18) and by substituting these values in Equation (2.12). This leads to a
system of N equations for the N +1 unknowns An, n = 1, . . . ,N and b. The last equation is
obtained by fixing the position of the separation points A and B by imposing

θ(φN)=γ −π/2, (2.19)

where the angle γ is defined in Figure 1. The system is solved by Newton’s method. The free-
surface profiles are then obtained by integrating numerically the identity

1
b

(
∂x

∂φ
+ i
∂y

∂φ

)
= e−τ+iθ . (2.20)

The numerical results can be described in terms of the angle γ . Solutions can be obtained
for all values 0 < γ < π . However, only the solutions for γ ∗ < γ < γ ∗∗, where γ ∗ ≈ 55◦ and
γ ∗∗ ≈ 124◦, have a physical meaning for the cavitating flow past a circle.

For γ < γ ∗, the solutions are not acceptable because the free surfaces enter the body (see
Figure 4). They are, however, useful in describing the cavitating flow past the body obtained
by cutting the circle along the straight line AB and retaining only the portion of the object
on the left of AB.

For γ > γ ∗∗, the solutions are not acceptable because the free surfaces cross each other
(see Figure 4). The last acceptable solution for γ = γ ∗∗ has free surfaces which approach
asymptotically the x-axis as x → ∞ (see Figure 5).

Physically acceptable solutions for γ > γ ∗∗ can be obtained by considering cusped cavities.
Cusped cavities were calculated numerically by finite differences by Southwell and Vaisey [11]
and analytically for special geometries by Lighthill [9,10]. In the next section, cusped cavities
are calculated numerically by a boundary-integral-equation method for obstacles of arbitrary
shapes.

3. Free-streamline-closed cavities

Unwanted intersections of free surfaces occur in many applications. A classical example is the
exact solution of Crapper [4] for nonlinear capillary waves travelling at a constant velocity
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Figure 6. Sketch of the flow past a circular cylinder
with a cusped cavity.
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Figure 7. Sketch of the flow of Figure 6 in the com-
plex potential plane.

at the surface of a fluid of infinite depth. Crapper’s solutions form a one-parameter family
of solutions. The parameter can be chosen as the steepness s of the waves (i.e., the differ-
ence of heights between crests and troughs divided by the wavelength). For small values of
s, the waves are close to linear sine waves. As s increases, the waves develop rounded crests
and sharp troughs. When s reaches the critical value s∗ ≈ 0·73, the free surface develops a
point of contact with itself and a small trapped bubble at the trough of the wave. For s > s∗,
the free surface is self-intersecting and the solutions lose their physical meaning. Vanden-Bro-
eck and Keller [18] showed that physically acceptable solutions for s > s∗ can be obtained by
preventing the free surface from self-intersecting. The resultant free-surface profiles for s > s∗

have trapped bubbles at the troughs like Crapper’s solution for s= s∗. Since preventing self-
intersection imposes an extra constraint on the solutions, an extra unknown is needed. This
is achieved by finding the pressure in the trapped bubble as part of the solution.

We use an approach similar to that of Vanden-Broeck and Keller [18] to find physically
acceptable cavitating flows for γ > γ ∗∗. We prevent the crossing of the streamlines and seek
a family of cusped cavities (see Figure 6). As we shall see, there is a cusped cavity for each
value of γ > γ ∗∗. These solutions approach the solution of Figure 5 as γ → γ ∗∗. In other
words the x-coordinate of the cusps in Figure 6 tends to ∞ as γ → γ ∗∗ and the correspond-
ing solutions approach that of Figure 5. As γ → 180◦, the x-coordinate of the cusp tends to
2 and the cavity collapses to a point.

Following the work of Vanden-Broeck and Keller [18], we need to identify a new unknown
to prevent the intersection of the streamlines. A natural choice is the pressure pc in the cavity.
This is motivated by the fact that cusped cavities are closed (they do not extend to infinity as
the open cavities of Section 2) and we do not have to require pc = pb. Therefore our dynamic
boundary condition on the free surfaces AL and BM of Figure 6 is

τ = 1
2

log(1+Cc), (3.1)

where the cavitation number Cc is found as part of the solution. As in Section 2, we define
the potential function bφ and the stream function bψ and we choose b so that φ = 1 at the
separation points B and A. The flow configuration in the complex (φ,ψ) plane is illustrated
in Figure 7.

We solve the problem by a boundary-integral-equation method. We derive the integral
equation by applying a Cauchy-integral-equation formula in the (φ,ψ) plane to the function
τ − iθ with a contour consisting of the axis ψ = 0 and a semicircle, in ψ < 0, centered on
φ = ψ = 0, of arbitrary large radius. Since τ − iθ → 0 as ψ → −∞, there is no contribution
from the semicircle and we obtain after taking the real part
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τ(φ)= 1
π

∫ ∞

−∞
θ(ϕ)

ϕ−φ dϕ. (3.2)

The integral in Equation (3.2) is a Cauchy principal value and τ(φ) and θ(φ) denote the
values of τ and θ on the streamline ψ = 0. Since θ = 0 on EC and on LD, Equation (3.2)
simplifies to

τ(φ)= 1
π

∫ l

0

θ(ϕ)

ϕ−φ dϕ. (3.3)

Here l is the value of φ at the cusp L.
The kinematic boundary condition on CA and the dynamic boundary condition Equation

(3.1) imply

eτ

b

∂θ

∂φ
=1 0<φ<1, (3.4)

τ = 1
2

log(1+Cc) 1<φ<l. (3.5)

Finally we impose y = 0 at the cusp by writing
∫ l

0
e−τ(ϕ) sin θ(ϕ)dϕ=0. (3.6)

This completes the formulation of the problem. We seek τ(φ) and θ(φ) so that Equations
(3.3–3.6) are satisfied. We solve the problem numerically. First we define the mesh points

φI = I −1
N −1

I =1, . . . ,M (3.7)

and the corresponding unknowns

θI = θ(φI ) I =1, . . . ,M, (3.8)

where l= M−1
N−1 . We also use the midpoints

φmI = (φI +φI+1)

2
I =1, . . . ,M−1. (3.9)

We calculate τ(φmI ) in terms of the unknowns Equation (3.8) by applying the trapezoidal rule to
the integral in Equation (3.3) with a summation over the points Equation (3.7). The symmetry
of the quadrature and of the distributions of mesh points enable us to calculate the Cauchy
principal value as if it were an ordinary integral. Next we satisfy Equation (3.4) at the mesh
points φmI , I = 2, . . . ,N −1 and Equation (3.5) at the mesh points φmI , I = N, . . . ,M−2. The
last three equations are given by Equation (3.6) and by the geometric conditions

θ1 =−π
2
, θM =0. (3.10)

This system of algebraic equations is solved by Newton’s method. Typical free-surface profiles
are shown in Figure 8. As γ → γ ∗∗, Cc → 0. As γ → 180◦, Cc → −∞.

We note that the numerical procedure presented in this section is not restricted to a cir-
cular obstacle and that it can be generalised to obstacles of arbitrary shapes in the following
way. First we denote by F(x, y) = 0 the equation of the rigid boundary CA and calculate x
and y on CA by the formulae

x(φ)=
∫ φ

0
e−τ(ϕ) cos θ(ϕ)dϕ, (3.11)
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Figure 8. Three computed cusped cavities. The cavita-
tion numbers Cc from the smallest cavity to the larg-
est are −0·55, −0·29 and −0·1, respectively.
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Figure 9. Values of the constant C in Equation (4.4)
versus the angle γ .

y(φ)=
∫ φ

0
e−τ(ϕ) sin θ(ϕ)dϕ. (3.12)

We then apply the numerical procedure described above with the equations obtained by sat-
isfying Equation (3.4) at the mesh points φmI , I = 2, . . . ,N −1 by the new equations

F [x(φmI ), y(φ
m
I )]=0 I =2, . . . ,N −1, (3.13)

where x(φ) and y(φ) are defined by Equations (3.11) and (3.12).
Lighthill [9,10] was able to obtain analytic solutions for cusped cavities by restricting his

attention to obstacles of particular shape (for example a step in [10]). Our numerical results
generalise Lighthill’s results for obstacles of arbitrary shape.

The solutions derived in this section are examples of cavities with Cc < 0. Batchelor [19,
pp. 503] notes that such cavities have not been observed, perhaps because the boundary layer
at the rigid surface would separate before reaching the low-velocity region where the free
streamlines begin.

Before concluding this section, let us mention that there are many cavity models with
Cc >0 (Riabouchinsky model, re-entrant jet model, Roskho model, etc). The reader interested
in these models is referred to the books of Birkhoff and Zarantonello [20, Chapter 6] and
Gurevich [21, Chapter 5].

4. Open cavities with surface tension

We consider the open-wake model of Section 2 with the effect of the surface tension T

included in the dynamic boundary condition. The condition p = pc on the surface AD of the
cavity is then replaced by

p=pc− T

ρ
K, (4.1)

where K is the curvature of the free surface. Proceeding as in Section 2 we seek τ − iθ as an
analytic function of φ+ iψ in the lower half plane ψ < 0 of Figure 2, satisfying Equations
(3.7) and (3.8) and

−eτ

b

∂φ

∂φ
= α

2
(e2τ −1) on ψ=0 1<φ<∞. (4.2)
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Here α is Weber number defined by

α= ρU2R

T
. (4.3)

Free-streamline flows (without surface tension) are usually characterised by an infinite cur-
vature of the free surface at the separation points (i.e., the points where free surfaces inter-
sect rigid surfaces). This does not affect solutions such as those presented in Sections 2 and
3 because the curvature of the free surface does not appear explicitly in the boundary condi-
tions. However, it is no longer the case for flows with surface tension, because the curvature
of the free surface appears explicitly in the dynamic boundary condition (see Equations (4.1)
and (4.2)). Therefore we can expect free-surface flows with T �= 0 to behave differently from
flows with T = 0 and the limit as T → 0 to be a singular limit. This is confirmed by the
results presented below.

We start our investigation by calculating the curvature KA of the free surface for the solu-
tion with T = 0 of Section 2 at the separation point A. Using Equations (2.6) and (2.17), we
find

KA= 1
b

∂θ

∂φ
≈−1

2
C(bφ−b)−1/2 as φ→1, (4.4)

where

C=−b−1/2 −b−1/2
∞∑
n=1

(−1)n+1(2n−1)An. (4.5)

A graph of C versus the angular position γ of the separation points is shown in Figure 9.
The constant C vanishes when γ = γ ∗ ≈ 55◦. Thus Equation (4.4) shows that the curvature
of the free surface at the separation points is infinite unless γ = γ ∗.

Ackerberg [22], Cumberbatch and Norbury [23], Vanden-Broeck [12–16] and others studied
the flow configuration of Figure 1 (and related free-surface flows) in the limit as T → 0. The
results of Vanden-Broeck [12–16] showed that the inclusion of surface tension in the model of
Section 2 does not remove the infinite curvature at the separation points. On the contrary, it
makes the flow more singular by introducing a discontinuity in slope at the separation points.
In other words, there is an angle β between the free surface and the tangent to the circle at
the points A and B. The angle β is a function of γ and α. It is counted positive when the
free surface lies above the tangent to the circle at the separation point B. Vanden-Broeck [13]
showed that

β≈ C

2

(π
α

)1/2
as α→∞. (4.6)

For γ >γ ∗, Figure 9 shows that C > 0 and Equation (4.6) predicts β > 0. The flow near B
is a flow inside an angle with a zero velocity at B. For γ < γ ∗, Figure 9 shows that C < 0
and the values of β predicted by Equation (4.6) are then negative. The flow near B is then a
flow around a corner with an infinite velocity at B. These results are only valid for α large.
As α → 0, Equation (4.2) shows that the curvature of the free surfaces tends to zero. Since
the flows are characterised by a constant velocity at infinity, the free surfaces must approach
two horizontal straight lines. Therefore

β→γ − π

2
as α→0. (4.7)

Relation (4.7) shows that β < 0 in the limit α → 0 when γ < π/2. Relation (4.6) shows
that β >0 in the limit α → ∞ when γ > γ ∗. If we assume that for a given value of γ , β is
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a continuous function of α, there must exist for each value of α a particular value of γ ∗ <
γ <π/2 for which β = 0 (i.e., for which the flow leaves the circle tangentially). We describe
these particular values of γ by the function

γ =g(α). (4.8)

This conjecture was confirmed by Vanden-Broeck [15] and [16]. Vanden-Broeck [15] computed
the function g(α). Vanden-Broeck [16] showed that β is a continuous function of α by com-
puting solutions with β �= 0. These numerical results show that

g(α)→γ ∗ as α→∞. (4.9)

This implies that the limit T → 0 can be used to select a particular solution with T = 0. In
Section 2 we calculated solutions with T = 0. Then the dynamic boundary condition implies
β = 0. We obtained solutions for all values of γ . When T �= 0, solutions with β = 0 exist only
for values of γ satisfying Equation (4.8). Taking the limit α → ∞, Equation (4.7) shows that
we select the solution corresponding to γ =γ ∗.

The solution corresponding to γ = γ ∗ is known as the solution satisfying the Brioullin-
Villat condition (see [20,21]). Therefore the selection mechanism based on the limit T → 0
provides a new physical interpretation of the Brioullin-Villat condition.

So far we have mainly considered solutions with β = 0. It is of interest to look at solutions
with β �= 0. The angle β can then be interpreted as a contact angle whose value depends on
the properties of the fluid and of the rigid boundary. Solutions with β �= 0 can be computed
by following the work of Vanden-Broeck [15]. We first map the flow of Figure 1 into the unit
circle in the t plane by the transformation

t= 1+ if 1/2

1− if 1/2
. (4.10)

The flow configuration in the t-plane is shown in Figure 10. Next we note that the flow near
A is locally a flow inside a corner with angle π−β and that the flow near C is a flow inside
a right angle corner. Therefore, using Equation (4.10) we obtain

u− iv∼ (t− i)β/π as t→ i, (4.11)

u− iv∼ t−1 as t→1. (4.12)

Following the series truncation method of Section 2, we represent the complex velocity by

u− iv= eτ−iθ = (1− t)(1+ t2)β/π
∞∑
n=0

ant
n. (4.13)

The multiplicative factors in front of the series in Equation (4.13) removes the singularity
Equation (4.11). Therefore we can expect the series in Equation (4.13) to converge in the unit
circle of the t-plane.

We describe points on the unit circle by t = eiσ , 0 < σ < π and we rewrite Equations (4.2)
and (2.8) as

−eτ

b

cos3(σ/2)
sin(σ/2)

dθ
dσ

= α

2
(e2τ −1)

π

2
<σ <π, (4.14)

eτ

b

cos3(σ/2)
sin(σ/2)

dθ
dσ

=1 0<σ <
π

2
. (4.15)
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Figure 10. The flow of Figure 1 mapped into the
t-plane by Equation (4.10).
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Figure 11. Values of γ versus α−1 for a given contact
angle β = 0·04π .

The coefficients an in Equation (4.13) are found so that Equations (4.14) and (4.15) are
satisfied. This is achieved by series truncation and collocation as in Section 2. The reader is
referred to [15] for details.

In Figure 11 we present values of γ versus α−1 for β = 0·04π . This curve can be viewed as
the equivalent of the curve Equation (4.8) but with β = 0·04π instead of β=0. One interest-
ing property in Figure 11 is that γ is not a monotonic function of α−1. However, only one
value of γ is selected for each value of the surface tension (i.e., of α−1). For α−1 small, γ
increases rapidly. This behaviour can be described by substituting β = 0·04π in Equation (4.6)
and noting that

C=2(0·04π)
(α
π

)1/2
, (4.16)

together with Figure 9, predicts that γ increases as α−1 decreases for α large.

5. Concluding remarks

We have presented numerical solutions for the flow configurations of Figures 1 and 6. The
method used to compute the cusped cavities of Figure 6 generalises the work of Lighthill [9,
10] to obstacles of arbitrary shape. When the surface tension T is neglected, the free surfaces
leave the cylinder tangentially and the angle β in Figure 1 is zero. When T �= 0, the angle β
is a function of the position γ of the separation point and of the Weber number α. We have
studied families of solution in which the angle β is fixed (this corresponds to fixing the con-
tact angle).

All the solutions with T �= 0 presented in this paper are waveless in the far field (i.e., as
x → ∞). This is consistent with the fact that the flow in Figure 1 is from left to right and
that capillary waves would violate the radiation condition [1, Section 3.6]. However, capillary
waves are acceptable if the flow is from right to left. Such configurations do not describe cav-
itating flows but can be used to model the flow at the front of a small object (insect or probe)
moving at the surface of a fluid. Families of flows with capillary waves in the far field and
β �= 0 have recently been calculated (see [24]).
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